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ABSTRACT
This paper describes a generalized motion-based framework for 
the generation of large musical control fields from imaging data. 
The framework is general in the sense that it does not depend on 
a particular  source  of  sensing data.  Real-time  images of stage 
performers, pre-recorded and live video,  as well as more exotic 
data  from  imaging  systems  such  as  thermography,  pressure 
sensor  arrays, etc.  can be used  as a source  of control.  Feature 
points  are  extracted  from  the  candidate  images,  from  which 
motion vector fields are calculated. After some processing, these 
motion  vectors  are  mapped  individually  to  sound  synthesis 
parameters.  Suitable  synthesis  techniques  include granular  and 
microsonic algorithms, additive synthesis and micro-polyphonic 
orchestration.  Implementation  details  of  this  framework  is 
discussed,  as  well  as  suitable  creative  and  artistic  uses  and 
approaches.
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1.INTRODUCTION
Since the pioneering work of Erkki Kurenniemi [17] and David 
Rokeby [20], a great number of musical interfaces using moving 
images as a source of control have been put forward. While the 
simple  design  of  Kurenniemi's  DIMI-O and  Rokeby's  VNS 
allowed  a  great  degree  of  freedom  as  to  what  their  cameras 
could shoot, it limited at the same time the variety of output  of 
which they were capable. More recent  work,  notably using the 
EyesWeb  platform,  has  focused  on  extracting  higher-level 
information from images, such as expressive content  [3]. These 
advances  allow a richer  form of interaction between performers 
and  musical  system  but  to  achieve  this,  they  require  the 
assumption that there is a performer in the first place. 

Despite  severe  limitations  like  poor  time-wise  resolution  and 
latency,  image-based  interfaces  have  important  merits.  One, 
highlighted above,  is that a great amount  of information can be 

extracted  from  them.  Another  important  characteristic  is  that 
they  typically  require  no  physical  contact  between  the  sensor 
and  the  object.  While  this  is  certainly  useful  for  stage 
performers, it  also  allows a great  degree  of  freedom  as  to the 
nature  of  the  objects  being  sensed.  Smoke,  clouds,  traffic, 
crowds  and  countless  other  phenomena  can  only  be  sensed 
remotely. Such phenomena exhibit complex natural patterns that 
may prove interesting when they are translated to music. Nature, 
after  all,  has  been  a  continuing  source  of  inspiration  for 
countless artists.
Generating the  large numbers of  control  parameters  frequently 
required to generate complex and organic sound structures  is a 
recurring  problem.  Granular  synthesis  typically  requires  the 
generation of a large number  of grains per second [19]  '  each 
one having its own set of parameters  '  and additive synthesis 
requires  dozens  if  not  hundreds  of  amplitude  envelopes  to  be 
generated  simultaneously.  Several  approaches  have  been 
proposed over  the years  to address this  issue.  Several  of these 
involve  one-to-many  mappings  or  stochastic  processes  [19]  to 
generate large control fields. 
Thus,  on  one  hand,  imaging  technologies  give  us  access  to 
potentially large amounts of information originating from varied 
sources  that  often  possess inherent  complex structures.  On the 
other  hand,  sound  synthesis  algorithms  like  granular  and 
additive synthesis require a large number  of control parameters 
to create complex sounds. It follows that moving images should 
be well-suited to control such algorithms. 
As has been pointed out in previous research [16][26],  motion 
provides  a link  between  images and sound.  Hence,  in order  to 
access  and sonify the  complex structures  that  can be found  in 
imaging  data,  a  motion  flow field describing  the  motion  at 
several  key  points  in  the  image  is  called  upon.  Instead  of 
deriving  high-level  descriptors  from  this  field,  its  individual 
components  will  be  used  to  control  matching  components  of 
dense  synthesis  techniques  such  as  granular  and  additive 
synthesis.

2.PREVIOUS WORK
2.1 Sonification
There  has  been  surprisingly  little  research  done  towards  the 
automatic  sonification  of  generic  video  sequences  for  artistic 
purposes.  Some systems  have been proposed for  automatically 
generating  soundtracks  for  existing  movies  [18]  but  these  are 
typically  not  aimed  at  musicians  or  composers.  Some  more 
artistically-relevant  work  has  been  done  with  still  images: 
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sonArt [30],  for  instance,  is  a system for  creating music from 
information contained in still pictures. 

Some research has been done from a more scientific perspective 
towards  the sonification of vector  fields,  which at the mapping 
stage  shares  some  similarities  with  the  framework  presented 
here.

Funk,  Kuwabara  and  Lyons  used  an  optical  flow  field  in 
conjunction  with  face  detection and zones  to  devise  a musical 
interface  that  can  be played  with  the  muscles  of  the  face.  [7] 
Jakovich  and  Beilharz  used  a  dense  optical  flow  field  (one 
computed  at  every  pixel  in  the  image)  to  alter  the  cells  of  a 
cellular  automaton  running  a  “game  of  life”,  which  in  turn 
controlled a granular synthesizer [10].

The most  similar  research to  date  is  that  of  Kapur  et  al.  who 
used motion data  from a VICON system to control parameters 
of various synthesis algorithms [11]. While their direct mapping 
(for instance using n motion vectors to control n sinusoids of an 
additive  synthesiser)  closely  mirrors  that  of  the  framework 
presented  here,  the  VICON system,  with  its  six  cameras  and 
physical  markers  imposes  great  physical  and  technological 
constraints  that  limit  the  range  of  its  practical  uses. 
Furthermore,  the  authors  focused  their  research  on  human 
gestures, whereas this research aims towards the use of arbitrary 
imaging data.

3.FEATURES AND FLOW
3.1 Image Features
Raw images  contain  a  vast  amount  of  information:  a  single-
channel  320  by  240  pixel  8-bit  image  contains  76,800  bytes, 
which  translates  to  2,304,000 bytes  per  second.  By contrast,  a 
stereo 16-bit audio stream at 44.1 kHz yields only 176,400 bytes  
per second. In order to limit the amount of data available, salient 
image features must first be identified.

While  the  term  “feature”  is  used  extensively in  the  computer 
vision  literature,  its  definition  remains  somewhat  vague.  A 
feature can be seen as “an interesting image structure that could 
arise  from a corresponding interesting scene structure.  Features 
can  be  single  points  such  as  interest  points,  curve  vertices,  
image  edges,  lines  or  curves  or  surfaces,  etc.”  [5]  For  the 
purpose of this  paper, however, features  can be seen as having 
the following properties: 1) They are local, that  is,  they have a 
specific  (x,y) position.  2)  They  exist  at  a  given  scale.  For 
example, a square can either yield a single large-scale feature or 
four small scale features at each corner. 3) Features are the local  
maximum  of  some  image  intensity  variation  metric.  The 
features  that  match  these  properties  are  often  referred  to  as 
“corners”.

As  feature  detection  is  now  one  of  the  most  fundamental 
processes in computer vision, several algorithms have been put 
forward [15]. The Harris detector [8] and its multi-scale variant 
[14],  and  the  very  closely  related  Shi-Tomasi  detector[22], 
which are based on the partial derivatives of the image intensity, 
are  some  of  the  most  commonly  used  algorithms.  Other 
detectors include the  difference of gaussian (DoG), the SUSAN 
corner  detector  [25]  and the FAST corner  detector  [21].  If  we 
limit our search to smallest-scale features   ' those occurring in 
a  9  pixel  by  9  pixel  neighborhood   ' the machine-learning-
based FAST detector is well-suited due to its rapid execution 
time.  However,  the Shi-Tomasi  detector  and the  DoG detector 
may prove better choices in certain situations.

3.2 Motion Flow
As  a  result  of  performing  feature  detection,  the  image  is 
described as a field of image  coordinates  (and optionally scale 
values)  corresponding  to  the  features  in  the  image.  While  it 
would  be possible  to  use this  information  as  it  is,  in  order  to 
perform more  significant  mappings,  it  is  important  to find  out 
how these features move from frame to frame. The techniques to 
achieve this can be broadly classified in two categories:  feature 
matching techniques and  optical flow-based techniques.

Feature matching techniques [25] involve finding the features in 
two different frames and matching each feature in one frame to 
the most  similar  feature in the second.  A number  of statistical  
metrics  can  be used  to  measure  the  similarity  of  two features 
based  on  the  values  of  its  pixel  neighborhoods.  The  sum  of 
squared differences  and the earth mover  distance are two such 
metrics  that  perform well  [25].  It  should be noted  that  feature 
matching  is  an  asymmetric  process:  not  all  features  in  both 
images  can  be  matched  into  pairs.  Some  features  in  the  first 
image  will  be lost,  some  in the second  will  appear  and some, 
outliers, will be mismatched.
Instead  of  computing  features  for  each  frame  and  finding 
matching  pairs,  it  is  also  possible  to  start  with  a given  set  of 
features  and calculate  the optical  flow at each of these  points. 
The optical flow is a (Δx,Δy) vector expressing apparent motion 
at  a point. Common  optical  flow estimation algorithms  can be 
classified  between  block-matching  methods  [1]  (which  are 
computationally  similar  to  feature  matching  algorithms)  and 
differential-based methods such as the Lucas-Kanade algorithm 
and its more robust pyramidal implementation [2]. Knowing the 
displacement value,  it  is  possible  to compute the new position 
for every feature at each frame. Because in most  cases features 
will  be lost, for example by moving outside the image bounds,  

Figure 1: Features  computed at two different scales



and new features are bound to appear, it is necessary to update 
the  feature  list  in  parallel  with  the  optical  flow  calculation. 
Hence,  the  image  is  processed  in  this  way:  optical  flow  is 
calculated for existing features and their position is updated →
features that could not be successfully tracked are removed from 
the list → new features are searched in image areas where there 
are currently no features.
Regardless of the combination of feature detection and tracking 
algorithm used,  the result is conceptually the same:  a field of 
motion vectors either in the format (x,y,Δx,Δy)  or 
(x,y,s,Δx,Δy,Δs)  where x and y denote position and s denotes 
scale.

3.3 The Flow Field
In its raw state,  the motion vector field computed above is not 
usable for  musical  purposes.  It  will  typically contain a certain 
number  of  outlier  vectors,  which  will  tend  to  produce  jarring 
and  unpredictable  results  when  mapped  to  sound  synthesis 
parameters. It is thus necessary to run a rather strict filter on the 
motion  field  to  get  rid  of  these  outliers.  This  filter  can  be 
implemented several different ways, including the median flow 
technique  described  by Smith  et  al.,  in  which  “each  vector  in 
turn  is  compared with  its  neighbours.  If  it  points  in  a similar 
direction  or  is  a  similar,  small,  length when  compared  to  the 
'median  flow'  in  that  area,  then  it  is  classified  as  an  inlier, 
otherwise it is discarded as an outlier.” [25]

While  the  motion  flow  field  is  expressed  using  cartesian 
coordinates and deltas, for later mapping purposes it is useful at 
this stage to translate at least the displacement values to a polar 
coordinate  system.  This  yields  the  following  motion  vector: 
(α,θ,s,Δα,Δθ,Δs) or in hybrid form:  (x,y,s,Δα,Δθ,Δs). (Here also, 
the scale dimension is optional.)

It would be possible at this stage to perform further analysis on 
the motion field.  3D reconstruction algorithms  would allow us 
to recover some form of depth information, either in the form of 
camera ego-motion or scene structure. More general algorithms 
can  quantify  certain  types  of  macroscopic  motion  such  as 
contractions  and  expansions,  as  well  as  perform  object 
segmentation.  However, in this  framework,  this  step is skipped 
in favor of using the vectors directly. 

4.MAPPING
4.1 Time
Depending on the type  of synthesis  technique used,  it  may  be 
necessary  to  process  the  motion  vectors  temporally.  Using 
current  hardware, frame  rates  of 30 Hz are typical  for camera-
based systems. More specialized cameras can image at up to 120 
Hz  but  processing  these  images  in  real-time  becomes 
problematic.  For  additive  synthesis  and  similar  generators  a 
control  rate  as low as  30 Hz may  not  always  be a significant  
problem,  however,  the  time  quantization  artifacts  that  results 
when motion vectors are used to generate sonic grains are quite 
noticeable and likely undesirable. The solution to this  problem 
is  to  smooth out  the  vector  field  temporally by delaying each 
vector individually by some random value normalized between 0 
and the projected time until the next frame is processed.

4.2 Space
Since  images  are  inherently  spatial,  the  most  natural  and 
motivated mapping possible is that  of vector  position to sound 
position.  As  a  matter  of  fact,  the  framework  outlined  in  this 
paper is particularly apt at creating complex spatial trajectories. 

The simplest type of spatial mapping is to assign the normalized 
x values  of each vector  to the stereo pan position  of the sonic 
component it corresponds to. There is typically more freedom as 
to  how  the  y axis  can  be  interpreted:  in  a  planar  surround 
playback  environment, it  can be mapped  to the front-back  axis 
although  in  some  setups,  it  could  also  be  assigned  to  the  up-
down axis. 
It is also possible to generate positional  vectors for the various 
audio spatialization methods available. The scale dimension (if 
it  is  calculated)  can be mapped  to the  z or  y axes,  with larger 
features  being  mapped  to  closer  positions.  While  this  would 
correctly  translate  features  becoming  smaller  and  larger  to 
sounds moving further and closer, this is a rather naïve mapping 
that can often lead to undesirable results.  Large features do not 
necessarily  correspond  to  closer  objects.   In  this  case,  one 
dimension  must  be  assumed  to  be  constant:  the  vectors  are 
assumed to move along a plane, though in some cases this is not 
an  accurate  representation  of  the  motion  of  the  object  being 
sensed.  In  some  situations  it  should  also  be  possible  to 
extrapolate  the  z axis displacement of motion vectors using 3D 
reconstruction algorithms.
One  of  the  great  advantages  of  using  motion  vectors  for 
spatialization is that since we know not only where a feature lies 
but also how fast  and in what direction it  is moving, it  is  also 
possible  to  use  this  information  to  control  doppler  shift 
simulations.

4.3 Amplitude
An  often  convincing  approach  to  controlling  amplitude 
parameters  of  synthesis  components  is  to  assign the  length of 
the  displacement  vector  (Δα) to  amplitude.  As  Δα is  directly 
related  to  motion  velocity,  this  means  that  faster  objects  will 
sound  louder.  This  relationship  is  somewhat  metaphorically 
grounded:  if  the  sound  is  thought  to  be  generated  through 
friction, then indeed faster gestures will produce louder sounds. 
Hence,  the  velocity→amplitude  mapping  is  to  an  extent 
perceptually motivated.

Overall  amplitude  is  also  indirectly  controlled  via  vector 
density.  As  has  already  been  mentioned,  motion  flow  over  a 
given  area  exhibits  smooth  transitions.  This  means  that  areas 
with  a  high  density  of  features  will  tend  to  produce  several 
similar  sound  components,  which  adding  up,  result  in  greater 
overall amplitude.
Lastly, when scale is taken into consideration, it can make sense 
to  use  it  to  control  amplitude,  with  larger  features  sounding 
louder.  Note  that  since  spatialization,  beyond  simple  linear 
panning, also affects amplitude it might not always be necessary 
to control amplitude directly.

4.4 Frequency and Timbre
The most difficult mapping to motivate is that of parameters that 
affect  the pitch and timbre of the sound.  That is not to say that  
such mappings must always be arbitrary, but they largely depend 
on the nature of the image used, the type of synthesis technique 



employed and most  importantly  the  intent  of  the  composer  or 
performer.

Even  in  situations  where  there  is  no  spatialization,  mapping 
vector displacement in a pseudo-doppler fashion can often result 
in  interesting sound textures.  Here,  frequency is  a function of 
the displacement relative to the image origin.
In some cases, where the image is to be controlled by a musical 
performer, simply assigning a given axis value to pitch can be a 
convincing and easy to understand approach.
Other  possible  mappings  for  frequency  include  distance  from 
origin  (α),  displacement  direction  (similar  conceptually  to 
accordions and harmonicas)  or displacement amplitude (related 
to the pseudo-doppler approach).
Timbre  control  in  this  framework  is  achieved  by  the 
superposition  of a great  number  of sound components  and  by 
altering the pitch and amplitude of these components.  It is also 
possible  to  affect  the  timbre  through  the  number  of  features 
present  in the image. This can be done either  by changing the 
input  image  so  that  it  is  less  complex  or  by  changing  the 
threshold of the feature  detector. A greater number  of features 
directly translates to a greater number of synthesis components.
When  using  granular  processing  of  recorded  sound,  it  is  also 
possible  to  control  the  timbre  of  the  resulting  sound  by 
assigning vector  position to sound file position.  For example, a 
vector moving from the left edge of the image to the right edge 
might  trigger  a sound to  be played  back from  start  to end (or 
vice-versa.)

5. AESTHETIC ISSUES
The framework presented here is meant  to be general  in nature 
and  adaptable  to  many  different  situations.  As a  performance 
tool, it offers a natural method of controlling sound clouds and 
dense  textures.  Two  usage  examples  highlight  an  important 
aesthetic aspect, that of control  gestalt . This control  gestalt  acts 
as  a  binding  agent  between  perceptual  groups,  or  clusters,  in 
both the source image and its sonified form [28].
Recent  portable computers often come equipped  with a camera 
mounted somewhere above the screen. With this camera, we can 
control  the  parameters  of  a  sound  mass  generated  through 
additive  synthesis.  If  frequency  is  a  function  of  the  motion 
vector's  position,  then  head  movements  towards  and away the 
screen will result in sonic expansion and contraction, as each of 
the components'  frequencies more towards and away from each 
other.  The  image  features  are  also  contracting  and  expanding 
away  from  each  other.  However,  we  do  not  need  to  actually 
measure this change.  By virtue of direct  sonification, the global 
characteristics  of  the  motion  flow  field  are  expressed  in  the 
sound output.
The first use of a system based on this framework by the author  
occurred in January 2007 for an improvised dance performance 
held  at  the  Hyōgo  Performing  Arts  Center.  The  sounds  were 
generated  by  granular  processing  of  sound  files,  with  each 
grain's  spacial  location  mapped  so  that  it  would  sound  to  the 
audience as though it was coming from where the dancer was. If 
there were two dancers standing at opposing sides  of the stage,  
two different  sound clusters  could  be heard  in those  positions. 
When a third dancer  raced  across the stage,  yet another  sound 
followed him.  However, while it  sounded as though there were 

three  voices  to  the  music  corresponding  to  each  dancer,  they 
were never  explicitly identified by the system.  The polyphonic 
aspect of the music was a direct  translation of the “polyphonic” 
nature of the action on stage.
To a limited  extent, this  form  of  control  gestalt ,  where  global 
control structures  implicitly result in similar  global  output  was 
already  present  in  early  zone-based  systems  like  the  VNS. 
However, the greater amount of information contained in motion 
vector  fields  coupled with  microsonic sound generation means 
that these relationships occur at a much finer degree.
The performance scenarios outlined above use image analysis in 
a traditional  fashion. Some more exotic approaches include the 
use  of  pre-recorded  video  as  a  composition  tool.  Translating 
visual structures and movements to musical forms can be a very 
efficient  and rewarding method of generating  musical  material 
that can be further edited or processed as part of a composition. 
The  motion  flow  field  lends  itself  especially  well  to  the 
generation of dense, micro-polyphonic scores.
Returning to the realm of performance,  the framework has also 
been used in conjunction with video content  generated in real-
time by a VJ, in order  to have the visuals linked  to part  of the 
music.  The possibility  of robustly coping  with a vast  range  of 
possible input structure is a great asset in this scenario.
In  a  somewhat  less  musical  vein,  it  is  also  possible  to  use 
systems based on motion flow fields to perform automated foley 
tasks. While some research has been done in this direction in the 
past [17], it assumed that the motion of objects in the scene was 
already  known.  With  some  adjustments  and  proper  sound 
generation algorithms, it is possible to create convincing sound 
effects,  especially  considering  the  spatial  gestalts outlined 
above.

6. IMPLEMENTATION
While  the  general  concepts  of  how  the  framework  can  be 
implemented  are  presented  in  earlier  sections,  the  current 
system implementation will be described in greater detail.

Despite its usefulness, the computation of the motion flow field 
remains somewhat intensive, limiting both the maximum frame 
rate,  minimum  latency,  image  size  and  CPU  cycles  left  for 
sound generation. This is especially problematic since the sound 
synthesis  algorithms  used tend  to  also  be rather  taxing.  In the 
earliest  implementation, the solution was to use two computers 
with  one  dedicated  to  image  analysis  and  the  other  to  sound 
generation.  This solution worked well but it is bulky and costly. 
In  recent  years,  much  attention  has  been  directed  towards 
general  processing  on  graphical  processors  (GPGPU)  [13]. 
Already  a  number  of  libraries,  such  as  OpenVIDIA  [6], 
implement  some computer vision task on the GPU, freeing the 
CPU for  other  tasks  and  sometimes  yielding  improvement  in 
performance of an order of magnitude [23].
The system is currently implemented as an external  object  for 
Cycling'74's  Jitter  system.  Standard Jitter  functionality  is  used 
for  image  input  but  all  further  processing  is  carried  out 
internally.  While  this  most  recent  implementation  of  the 
framework uses  the  GPU to  perform the  image  analysis,  it  is 
independent  of  existing  software  libraries.  When  GPU 
processing  is  available,  features  are  identified  using  the  Shi-
Tomasi  method  and  matching  is  performed  using  the  sum  of 



squared differences.  If the computation cannot be performed on 
the GPU, it reverts to the previous CPU-based algorithm, where 
features  are  selected  using  the  FAST method  and  are  then 
tracked  using pyramidal Lucas-Kanade optical  flow estimation. 
It  should  be  noted  that  since  different  feature  detection  and 
tracking algorithms are used the vector fields generated by GPU 
and CPU implementations will differ. In practice, however, they 
will display similar characteristics that will result in very similar 
sound output.
After  the motion flow field has  been  processed to remove  the 
noise  and make  adjustments to its  coordinates  it  is  sent  to the 
sound  synthesizer  via  OSC [29].  OSC is  used  to  decouple the 
analysis module from the synthesis module, which is meant  to 
be  implemented  by  the  user.  Temporal  smoothing  through 
random delay can be electively performed prior to output.

7.CONCLUSION
Motion  flow  fields  are  not  a  perfect  method  of  controlling 
musical parameters. As outlined above,  the temporal resolution 
is comparatively poor. The biggest flaw is probably that feature 
detection and tracking algorithms are not perfectly robust. When 
used as an instrument, it is often very difficult to finely control 
individual components, as one cannot know with certainty where 
precisely  features  will  be  identified  in  real-world  situations. 
However,  motion  flow  fields  are  better  suited  for  control  of 
dense masses of sound which in practice alleviates the problem. 
Its  main  merits  lies  in  the  generality  of  the  approach,  the 
possibility  of  using  natural  structures  as  a  source  of  sonic 
complexity and the control gestalts  outlined above.
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